Predicting Nearly As Well As the Optimal Twice Differentiable Regressor

نویسندگان

  • N. Denizcan Vanli
  • Muhammed O. Sayin
  • Suleyman S. Kozat
چکیده

We investigate the problem of sequential piecewise linear regression from a competitive framework. For an arbitrary and unknown data length n, we first introduce a method to partition the regressor space. Particularly, we present a recursive method that divides the regressor space into O(n) disjoint regions (partitions) that can result in approximately 1.5 different piecewise linear models on the regressor space. For each partition, we introduce a universal linear regressor whose performance is nearly as well as the best linear regressor whose parameters are set non-causally. We then use an infinite depth context tree to represent all piecewise linear models and introduce a universal algorithm to achieve the performance of the best piecewise linear model that can be selected in hindsight. In this sense, the introduced algorithm is twice-universal such that it sequentially achieves the performance of the best model that uses the optimal regression parameters. We then show that the performance of the introduced algorithm is asymptotically the same as the optimal twice differentiable function that is selected in hindsight. Our algorithm achieves this performance only with a computational complexity upper bounded by O(n). Furthermore, we present a low complexity, namely O(log(n)), implementation of the algorithm achieving the same upper bound under certain regularity conditions. We provide the explicit description of the algorithm as well as the upper bounds on the regret with respect to the best nonlinear and piecewise linear models, and demonstrate the performance of the algorithm through simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining the Optimal Strategy of Multi Virtual Power Plants using GA-GT

abstract: In the present work, determining the optimal strategy(profit based) of multi virtual power plants (VPPs) as well as the objective of maximizing profit through the multi-level control of VPPs are discussed by the micro-grid utilization center including virtual power plants. VPPs include renewable resources such as wind farms, photovoltaic, and conventional resources such as fuel cell, ...

متن کامل

On the smoothness of value functions and the existence of optimal strategies in diffusion models

Studies of dynamic economic models often rely on each agent having a smooth value function and a well-defined optimal strategy. For time-homogeneous optimal control problems with a one-dimensional diffusion, we prove that the corresponding value function must be twice continuously differentiable under Lipschitz, growth, and non-vanishing-volatility conditions. Under similar conditions, the valu...

متن کامل

On the functional form of convex underestimators for twice continuously differentiable functions

The optimal functional form of convex underestimators for general twice continuously differentiable functions is of major importance in deterministic global optimization. In this paper, we provide new theoretical results that address the classes of optimal functional forms for the convex underestimators. These are derived based on the properties of shift-invariance and sign-invariance.

متن کامل

Optimal Inference for Instrumental Variables Regression with non-Gaussian Errors

A . This paper is concerned with inference on the coefficient on the endogenous regressor in a linear instrumental variables model with a single endogenous regressor, nonrandom exogenous regressors and instruments, and i.i.d. errors whose distribution is unknown. It is shown that under mild smoothness conditions on the error distribution it is possible develop tests which are “nearly” efficient...

متن کامل

Optimal Inference for Instrumental Variables Regression with non-Gaussian Errors

A . This paper is concerned with inference on the coefficient on the endogenous regressor in a linear instrumental variables model with a single endogenous regressor, nonrandom exogenous regressors and instruments, and i.i.d. errors whose distribution is unknown. It is shown that under mild smoothness conditions on the error distribution it is possible develop tests which are “nearly” efficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014